Cycloadditions, 471)

A Route to Functionalized Cyclic Ethers by Intramolecular Cycloadditions of Unsaturated Nitro Ethers

Alfred Hassner* and Wim Dehaen

Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel

Received October 8, 1990

Key Words: Stereoselective cyclizations / Ethers, cyclic / Dipolar cycloadditions / Nitro olefins

A convenient conversion of aldehydes via nitroolefins 2 into cyclic ethers 6 fused to an isoxazoline ring involves formation of unsaturated nitroalkyl ethers 4 and subsequent intramolecular cycloaddition of an in situ-formed nitrile oxide olefin. The cyclization proceeds with stereoselective formation of trans

over *cis* isomers in the tetrahydrofuran series and opposite stereoselectivity in the tetrahydropyran and hexahydrooxepine series, depending on the substituent R in the original nitro compound, thus providing access to stereoselectively functionalized cyclic ethers.

Stereoselectively substituted and functionalized tetrahydrofurans and pyrans are of interest as analogs of carbohydrates²⁾. We have recently shown³⁾ that intramolecular nitrile oxide olefin cycloaddition (INOC)⁴⁾ represents a useful entry into such cyclic ethers. The starting point for the required unsaturated nitrile oxides 5 has been the reaction of O-silyl-β-bromo aldoximes⁵⁾ with allyl alcohol which proceeds via nitroso alkenes⁶⁾ to produce unsaturated oxime ethers. The latter are transformed by means of NaOCl into nitrile oxides 5, which spontaneously cyclize to tetrahydrofuro-isoxazolins 6^{3} . Since the α -bromo aldoxime synthons are prepared in a two-step sequence from aldoximes, the application of this method allows aldehydes R-CH₂CHO and allyl alcohols to be converted into functionalized cyclic ethers 6. A disadvantage is the requirement of a 10-fold excess of the allyl alcohol. Since primary nitro compounds can likewise be converted into nitrile oxides⁷, we have felt

that the use of stable nitro alkenes may prove more advantageous for these reactions.

Results

We now report on a shorter, more convenient conversion of lower homologous aldehydes R-CHO (1) into substituted tetrahydrofurans 6. The sequence takes advantage of the ready formation of conjugated nitro compounds 2 from 1 followed by Michael addition of the alkoxide of an unsaturated alcohol 3 (2-3 molar equivalents) to produce the unsaturated nitro ethers 4. Alternatively, the nitro alkenes 2 are generated in situ from the nitro acetates 7, which prove advantageous for R= aliphatic residue. The nitro ethers 4 are transformed by means of phenyl isocyanate into the nitrile oxides 5, which spontaneously cyclize.

	R	R'=R"		R	R'	R"
a	Ме	Н	e	4-CH ₃ OC ₆ H ₄	Н	Н
ь	Et	Н	f	4-CH ₃ OC ₆ H ₄	Н	Ме
С	<i>i</i> Pr	Н	g	4-CH ₃ OC ₆ H ₄	Н	Ph
đ	Ph	н	h	4-CH ₃ OC ₆ H ₄	Ме	Н

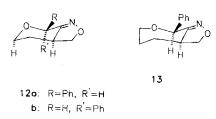
The new sequence is particularly suitable for the synthesis of tetrahydrofurans possessing aryl substituents. Homoallyl alcohol also adds to nitroalkenes 2, and the resulting nitro ethers 8 are converted via nitrile oxides into cyclic ethers

9a-c in 70-90% yields. The seven-membered ether 9d is obtained only in 30% yield on high dilution. The reaction of 2 with propargyl alcohol furnishes the acetylenic nitro ether 10 which undergoes the INOC reaction to provide oxazole 11.

In all cases the basic structure of the products is apparent from ¹H- and ¹³C-correlated NMR and mass spectra as well as elemental analyses (see stereochemical discussion and Experimental).

Stereochemistry

One of the interesting features of INOC reactions is the stereoselectivity during the cyclization process, since this leads to selectively substituted cyclic ethers $\bf 6$ or $\bf 9$. The aliphatically substituted systems $\bf 6$ ($\bf R$ = Alkyl) are quite sensitive to the steric size of the substituent. While the *trans:cis* ratio in the formation of $\bf 6a$ or $\bf 6b$ ($\bf R$ = Me or Et) is 2.5:1, it changes to 6:1 when $\bf R$ is isopropyl.


The phenyl and p-methoxyphenyl systems 6d and 6e are produced in a 4:1 trans:cis ratio 8. No considerable change in the trans:cis ratio is observed (3:1 for 6f,g and 2:1 for 6h) on additional substitution in the olefinic part of the molecule. The stereochemistry of the olefinic double bond in 4 is maintained in the product 6. In the cases of 6d-f, where R = aromatic, separation of the isomers by chromatography has been achieved. The stereochemistry in 6d-f is confirmed by NOE experiments, in which irradiation of the benzylic singlet causes only a 2.5% enhancement of the bridgehead multiplet in the isolated cis isomers.

These results are in qualitative agreement with MM2 calculations³⁾, which predict an energy difference of 0.38 kcal/mol in favor of the *trans* isomer for the cyclization of 5 to 6 when $R = Me \text{ vs. } 0.96 \text{ kcal/mol when } R = Ph \text{ and } 0.85 \text{ kcal/mol when } R = iPr^{9}$.

In the formation of the tetrahydropyrans $9\mathbf{a} - \mathbf{c}$, the isomer ratio is reversed (1:6 in favor of the *cis* isomer) compared to that in the tetrahydrofurans $\mathbf{6}$, as shown before for the phenyl analog of $9\mathbf{b}^{3}$. MM2 calculations indicate that the *cis* isomer is favored by 1.5 kcal/mol when $\mathbf{R} = \mathbf{Ph}^{3}$. The identical *trans:cis* ratio of 1:6, when R is Ph or *p*-methoxyphenyl (9b), indicates that the *p*-MeO group has no effect on the isomer ratio. Even with the highly hindered mesityl substituent (see $9\mathbf{c}$) the *cis* isomer predominates (over 95%).

The stereochemistry in the six-membered ring products $\bf 9$ has been assigned on the basis of NOE experiments and the γ effect (gauche effect) in the 13 C-NMR spectra. Thus, irradiation of the benzylic axial proton in $\bf 9b$ (cis isomer) causes an enhancement of 6% for the axial proton at $\delta = 3.73$ (CH₂O) and 2.5% for the axial bridgehead multiplet at 3.50. In both cis and trans isomers $\bf 9b$ a diaxial coupling (13 Hz) of the bridgehead hydrogen to the axial proton of the adjacent CH₂ group is observed. These data confirm 3 conformation $\bf 12a$ for the cis isomer of $\bf 9b$. For trans- $\bf 9b$ the NMR data suggest conformation $\bf 12b$ with an axial phenyl substituent rather than a conformation in which Ph is equatorial and the isoxazoline CH is axial.

The axial phenyl group in *trans*-9**b** shields (γ effect) both the CH₂O carbons (δ = 59.58 vs. 66.53 in the *cis* isomer) as well as the bridgehead CH (δ = 43.81 vs. 46.58). The benzylic CH is also shielded in *trans*-9**b** (δ = 72.19 vs. 77.10), as expected. In the mesityl-substituted isoxazoline (*cis* isomer of 9**c**), a γ effect of the *o*-methyl groups on the benzylic carbon (δ = 73.67) is observed, while the bridgehead carbon is unaffected.

The stereochemistry of the seven-membered ring product 9d has been tentatively assigned as *cis* (see conformation 13), due to the low-field absorptions of both the benzylic ($\delta = 77.35$) and the bridgehead carbon (48.43) and a 12-Hz coupling of the axial bridgehead proton to the adjacent axial H¹⁰).

Support of this research by Grant 87-00299 from the *US-Israel Binational Science Foundation* is gratefully acknowledged. We are grateful to Dr. H. E. Gottlieb for valuable help with NMR spectra.

Experimental

¹H (300 MHz) and ¹³C NMR (75 MHz): Bruker 300 MHz, CDCl₃ solutions, internal reference tetramethylsilane. – MS: Finnigan 4021 mass spectrometer, 35 eV. – Chromatographic separations: silica gel (70–230 mesh, Merck) column.

General Procedure for the Synthesis of β -Nitro Ethers 4, 8, 10

2-(Allyloxy)-1-nitropropane (4a): A solution of 1.74 g (30 mmol) of allyl alcohol in 20 ml of tetrahydrofuran (THF) was stirred at -10 to -20 °C, while 3.36 g (30 mmol) of potassium tert-butoxide was added in small portions. After all the base had dissolved, a solution of 0.87 g (10 mmol) of 1-nitro-1-propene (2a) in 10 ml of THF was added dropwise over ca. 15 min. Stirring was continued for an additional 15 min, then 2 ml of acetic acid was added, followed by 50 ml of ether. The mixture was filtered, the inorganic salts were washed several times with ether, and the combined filtrates were concentrated. Chromatography of the residue over silica gel with petroleum ether/ether (4:1) as the eluent gave 1.28 g of 4a (88%) as a colorless oil. Alternatively, 2-acetoxy-1-nitropropane (7, R = Me) was used instead of the nitro alkene without affecting the yield. — ¹H NMR: $\delta = 1.27$ (d, J = 7 Hz, 3 H, CH₃), 3.88 and 4.08 (ddt, J = 13/6/1 Hz, 1H, CH₂O), 4.24 (ddq, J = 9/7/4 Hz, 1H, CH-O), 4.34 (dd, J = 12/4 Hz, 1 H, CH_2NO_2), 4.46 (dd, J = 12/49 Hz, 1 H, CH₂NO₂), 5.18 (dq, J = 10/1 Hz, 1 H, vinyl), 5.25 (dq, J = 17/1 Hz, 1H, vinyl), 5.85 (ddt, J = 18/10/6 Hz,1H, vinyl). ¹³C NMR: $\delta = 17.11$ (CH₃), 70.26 (CH₂O), 71.62 (CHO), 80.03 (CH_2NO_2) , 117.44, 134.12. – MS (m/z), relative intensity, EI): 146 $[MH^{+}]$ (82), 88 $[M^{+} - C_{3}H_{6}O]$ (53), 85 $[M^{+} - CH_{2}NO_{2}H]$ (100).C₆H₁₁NO₃ (145.2) Calcd. C 49.65 H 7.54

Found C 49.39 H 7.73

2-(Allyloxy)-1-nitrobutane (4b) was prepared in the same manner from 2-acetoxy-1-nitrobutane (7, R = Et) and allyl alcohol in 66%

Cycloadditions, 47

yield as a colorless oil. $^{-1}$ H NMR: δ = 0.98 (t, J = 7.5 Hz, 3 H, CH₃), 1.63 (m, 2H, CH₂), 3.96–4.13 (m, 3H, CH–O + CH₂O), 4.39 (dd, J = 13/4 Hz, 1 H, CH₂NO₂), 4.48 (dd, J = 13/8 Hz, 1 H, CH₂NO₂), 5.19 (dq, J = 10/1 Hz, 1 H, vinyl), 5.26 (dq, J = 17/1 Hz, 1 H, vinyl), 5.86 (ddt, J = 17/10/6 Hz, 1 H, vinyl). $^{-13}$ C NMR: δ = 9.00 (CH₃), 24.64 (CH₂), 70.98 (CH₂O), 76.82 (CHO), 78.42 (CH₂NO₂), 117.37 and 134.03. — MS (m/z, relative intensity, EI): 160 [MH⁺] (28), 102 [M⁺ - C₃H₆O] (41), 99 [M⁺ - CH₂NO₂H] (100).

 $C_7H_{13}NO_3$ (159.2) Calcd. C 52.83 H 8.18 Found C 53.10 H 8.47

2-(Allyloxy)-3-methyl-1-nitrobutane (**4c**) was prepared from 2-acetoxy-3-methyl-1-nitrobutane (7, R = *i*Pr) and allyl alcohol in 73% yield as a colorless oil. — ¹H NMR: δ = 0.96 and 0.98 (d, J = 7 Hz, 3 H, CH_3 CH), 1.97 [d sept, J = 7/5 Hz, 1 H, (CH₃)₂CH], 3.92 (dt, J = 8/5 Hz, 1 H, CH – O), 4.01 and 4.08 (ddt, J = 12/6/1 Hz, 1 H, CH₂O), 4.40 (dd, J = 12/5 Hz, 1 H, CH₂NO₂), 4.47 (dd, J = 12/8 Hz, 1 H, CH₂NO₂), 5.19 (dq, J = 10/1 Hz, 1 H, vinyl), 5.25 (dq, J = 17/1 Hz, 1 H, vinyl), 5.85 (ddt, J = 17/10/6 Hz, 1 H, vinyl). — ¹³C NMR: δ = 17.68 and 17.86 [(CH₃)₂CH], 30.27 [(CH₃)₂CH], 72.06 (CH₂O), 77.20 (CH – O), 80.87 (CH₂NO₂), 117.37, 134.15. — MS (m/z, relative intensity, EI): 174 [MH⁺] (68), 116 [M⁺ – C₃H₆O] (18), 113 [M⁺ – CH₂NO₂H] (100).

C₈H₁₅NO₃ (173.2) Calcd. C 55.49 H 8.67 Found C 55.79 H 8.91

1-(Allyloxy)-2-nitro-1-phenylethane (4d) was prepared from β-nitrostyrene (2d) and allyl alcohol in 87% yield as a light yellow oil. — ¹H NMR: δ = 3.82 (ddt, J = 13/6/1 Hz, 1 H, CH₂O), 3.98 (ddt, J = 13/5/1 Hz, 1 H, CH₂O), 4.40 (dd, J = 13/3 Hz, 1 H, CH₂NO₂), 4.64 (dd, J = 13/10 Hz, 1 H, CH₂NO₂), 5.14 (dd, J = 10/3 Hz, 1 H, CH–O), 5.17 (dq, J = 10/1 Hz, 1 H, vinyl), 5.21 (dq, J = 17/1 Hz, 1 H, vinyl), 5.83 (dddd, J = 17/10/6/5 Hz, 1 H, vinyl), 7.32–7.43 (m, 5 H, Ph). — ¹³C NMR: δ = 70.00 (CH₂O), 77.47 (CH–O), 80.40 (CH₂NO₂), 117.59, 126.82, 129.02, 133.71, 136.39. — MS [m/z, relative intensity, CI(NH₃)]: 225 [MNH⁺₄] (100), 207 [MH⁺] (1), 147 [M⁺ — CH₂NO₂] (16).

C₁₁H₁₃NO₃ (207.2) Calcd. C 63.77 H 6.28 Found C 63.93 H 6.29

1-(Allyloxy)-1-(4-methoxyphenyl)-2-nitroethane (4e) was obtained from 4-methoxy-β-nitrostyrenc (2e) and allyl alcohol in 69% yield as a light yellow oil. - ¹H NMR: δ = 3.78 (ddt, J = 13/6/1 Hz, 1H, CH₂O), 3.80 (s, 3H, CH₃O), 3.97 (ddt, J = 13/5/1 Hz, 1H, CH₂O), 4.37 (dd, J = 13/4 Hz, 1H, CH₂NO₂), 4.64 (dd, J = 13/10 Hz, 1H, CH₂NO₂), 5.09 (dd, J = 10/4 Hz, 1H, CH - O), 5.15 (dq, J = 10/1 Hz, 1H, vinyl), 5.18 (dq, J = 17/1 Hz, 1H, vinyl), 5.84 (dddd, J = 17/10/6/5 Hz, 1H, vinyl), 6.94 and 7.28 (dt, J = 9/2 Hz, 2H, Ar). - ¹³C NMR: δ = 55.29 (CH₃O), 69.59 (CH₂O), 76.90 (CH - O), 80.39 (CH₂NO₂), 114.39, 117.59, 128.04, 128.14, 133.74, 160.13. — MS (m/z, relative intensity, EI): 237 [M⁺] (33), 177 [M⁺ - CH₂NO₂] (100), 144 [177 - C₂H₄] (21), 135 [277 - C₃H₆O] (71), 134 [M⁺ - HNO₂ - C₃H₆OH] (58), 121 [177 - C₃H₆O] (41).

C₁₂H₁₅NO₄ (237.3) Calcd. C 60.74 H 6.33 Found C 60.58 H 6.46

1-(trans-2-Butenyloxy)-1-(4-methoxyphenyl)-2-nitroethane (4f) was prepared from 4-methoxy-β-nitrostyrene (2e) and crotyl alcohol in 82% yield as a light yellow oil. - ¹H NMR: $\delta = 1.69$ (dq, J = 6/1 Hz, 3H, CH₃), 3.72 (ddm, J = 12/7 Hz, 1H, CH₂O), 3.82 (s, 3H, CH₃O), 3.89 (ddm, J = 12/6 Hz, 1H, CH₂O), 4.36 (dd, J = 13/4 Hz, 1H, CH₂NO₂), 4.62 (dd, J = 13/10 Hz, 1H, CH₂NO₂), 5.05 (dd, J = 10/4 Hz, 1H, CH=O), 5.45=5.70 (m, 2H, vinyl), 6.92 and 7.28 (dt, J = 9/2 Hz, 2H, Ar). - ¹³C NMR: $\delta = 17.63$ (CH₃),

55.23 (CH₃O), 69.35 (CH₂O), 76.57 (CH-O), 80.38 (CH₂NO₂), 114.31, 126.55, 128.12, 128.26, 130.13, 160.02 - MS (m/z, relative intensity, EI): 251 [M⁺] (1), 191 [M⁺ - CH₂NO₂] (39), 180 [M⁺ - C₄H₇O] (23), 137 [191-C₄H₆] (100), 135 [191- C₄H₈] (32), 134 [M⁺ - HNO₂ - C₄H₇OH] (58).

C₁₃H₁₇NO₄ (251.3) Calcd. C 62.15 H 6.77 Found C 61.93 H 7.05

1-(4-Methoxyphenyl)-2-nitro-1-(trans-3-phenyl-2-propenyloxy)-ethane (4 g) was prepared from 4-methoxy-β-nitrostyrene (2e) and cinnamyl alcohol in 66% yield as a light yellow oil. — 1 H NMR: δ = 3.82 (s, 3 H, CH₃O), 3.96 (ddd, J = 13/6/1 Hz, 1 H, CH₂O), 4.13 (ddd, J = 13/5/1 Hz, 1 H, CH₂O), 4.39 (dd, J = 13/4 Hz, 1 H, CH₂NO₂), 4.68 (dd, J = 13/10 Hz, 1 H, CH₂NO₂), 5.14 (dd, J = 10/4 Hz, 1 H, CH₂NO₂), 6.18 (ddd, J = 16/6/5 Hz, 1 H, vinyl), 6.49 (dt, J = 16/1 Hz, 1 H, vinyl), 7.20 – 7.38 (m, 5 H, Ph). — 13 C NMR: δ = 55.53 (CH₃O), 69.28 (CH₂O), 76.82 (CH – O), 80.40 (CH₂NO₂), 114.47, 125.06, 126.54, 127.81, 128.07, 128.25, 128.55, 132.89, 136.46, 160.19. — MS (m/z, relative intensity, EI): 313 [M+] (1), 180 [M+ — PhCH=CHCH₂O] (26), 134 [180 — NO₂] (100), 117 [PhCH=CHCH₂+] (44).

C₁₈H₁₉NO₄ (313.4) Calcd. C 69.01 H 6.07 Found C 69.08 H 5.81

1-(4-Methoxyphenyl)-1-(2-methyl-2-propenyloxy)-2-nitroethane (4h) was prepared from 4-methoxy-β-nitrostyrene (2e) and methallyl alcohol in 77% yield as a light yellow oil. — ¹H NMR: δ = 1.68 (s, 3 H, Me), 3.68 (br d, J = 12 Hz, 1 H, CH₂O), 3.82 (s, 3 H, CH₃O), 3.85 (br d, J = 12 Hz, 1 H, CH₂O), 4.37 (dd, J = 12.5/3.5 Hz, 1 H, CH₂NO₂), 4.65 (dd, J = 12.5/10 Hz, 1 H, CH₂NO₂), 4.86 and 4.88 (m, 1 H, vinyl), 5.05 (dd, J = 10/3.5 Hz, 1 H, CH – O), 6.92 and 7.28 (dt, J = 9/2 Hz, 2 H, Ar). — ¹³C NMR: δ = 19.39 (CH₃), 55.31 (CH₃O), 72.63 (CH₂O), 76.89 (CH – O), 80.48 (CH₂NO₂), 113.10, 114.41, 128.03, 128.21, 141.28, 160.15. — MS [m/z, relative intensity, CI (NH₃)]: 269 [MNH⁺₄] (100), 251 [M⁺] (12), 197 [M⁺ — C₄H₆], (55), 191 [M⁺ — CH₂NO₂H] (49), 180 [M⁺ — C₄H₇O] (75).

C₁₃H₁₇NO₄ (251.3) Calcd. C 62.15 H 6.77 Found C 62.01 H 6.90

2-(3-Butenyloxy)-1-nitropropane (8a) was prepared from 2-acetoxy-1-nitropropane (7, R = Me) and 3-buten-1-ol in 79% yield as a colorless oil. — 1 H NMR: δ = 1.25 (d, J = 6.5 Hz, 3 H, CH₃), 2.30 (qt, J = 6.5/1 Hz, 2H, CH_2CH_2O), 3.41 and 3.61 (dt, J = 9/6.5 Hz, 1 H, CH₂O), 4.18 (m, 1 H, CH – O), 4.32 (dd, J = 13/4 Hz, 1 H, CH₂NO₂), 4.44 (dd, J = 13/9 Hz, 1 H, CH₂NO₂), 5.04 (dq, J = 10/1 Hz, 1 H, vinyl), 5.08 (dq, J = 17/1 Hz, 1 H, vinyl), 5.78 (ddt, J = 17/10/1 Hz, 1 H, vinyl). — 13 C NMR: δ = 17.14 (CH₃), 34.22 (CH₂CH₂O), 68.91 (CH₂O), 72.44 (CH – O), 80.06 (CH₂NO₂), 116.62 and 134.78. — MS (m/z, relative intensity, CI, CH₄): 160 [MH⁺] (5), 118 [MH⁺ — CH₂=C=O) (34), 99 [M⁺ — CH₂NO₂] (100).

C₇H₁₃NO₃ (159.2) Calcd. C 52.83 H 8.18 Found C 53.11 H 8.46

1-(3-Butenyloxy)-1-(4-methoxyphenyl)-2-nitroethane (8b) was prepared from 4-methoxy-β-nitrostyrene (2e) and 3-buten-1-ol in 83% yield as a light yellow oil. — ¹H NMR: δ = 2.28 (qt, J = 7/1 Hz, 2H, CH_2CH_2O), 3.35 and 3.42 (dt, J = 9/7 Hz, 1H, CH_2O), 3.81 (s, 3 H, CH_3O), 4.46 (dd, J = 13/4 Hz, 1 H, CH_2NO_2), 4.60 (dd, J = 13/10 Hz, 1 H, CH_2NO_2), 5.01 (m, 2H, CH_2O + vinyl), 5.03 (dq, J = 10/1 Hz, 1 H, vinyl), 5.73 (ddt, J = 17/10/7 Hz, 1 H, vinyl), 6.92 and 7.28 (dt, J = 9/2 Hz, 2H, Ar). — ¹³C NMR: δ = 33.85 (CH_2CH_2O), 55.26 (CH_3O), 68.46 (CH_2O), 77.97 (CH_2O), 80.40 (CH_2NO_2), 114.33, 116.47, 127.98, 128.34, 134.65, 160.04. — MS

A. Hassner, W. Dehaen

 $(m/z, \text{ relative intensity, EI}): 251 [M^+] (19), 191 [M^+ - CH_2NO_2] (100), 134 [M^+ - NO_2 - C_4H_9O] (89).$

C₁₃H₁₇NO₄ (251.3) Calcd. C 62.15 H 6.77 Found C 61.92 H 6.89

1-(3-Butenyloxy)-2-nitro-1-(2,4,6-trimethylphenyl)ethane (8 c) was prepared from 2,4,6-trimethyl-β-nitrostyrene (2, R = mesityl) and 3-buten-1-ol in 81% yield as a light yellow oil. — ¹H NMR: $\delta = 2.27$ (s, 3H, 4-Me), 2.29 (m, 2H, CH_2CH_2O), 2.43 (br s, 6H, 2,6-Me), 3.33 and 3.39 (dt, J = 9/6.5 Hz, 1H, CH_2O), 4.30 (dd, J = 13/3 Hz, 1H, CH_2NO_2), 4.88 (dd, J = 13/10 Hz, 1H, CH_2NO_2), 5.00 (dq, J = 1 Hz, 1H, vinyl), 5.03 (dq, J = 17/1 Hz, 1H, vinyl), 5.54 (dd, J = 10/3 Hz, 1H, CH_2O), 5.74 (ddt, J = 17/10/6.5 Hz, 1H, vinyl), 6.85 (s, 2H, Mesityl). — ¹³C NMR: $\delta = 20.29$ (2,6-Me), 20.77 (4-Me), 34.04 (CH_2CH_2O), 68.69 (CH_2O), 75.63 (CH_2O), 77.94 (CH_2NO_2), 116.55, 128.77, 130.46 (br), 134.81, 137.11 (br), 138.21. — MS (m/z, relative intensity, EI): 263 [M+] (2), 203 [M+ — CH_2NO_2] (100), 192 [M+ — C_4H_7O] (23), 146 [192 — NO_2] (86), 132 [192 — CH_2NO_2] (42).

C₁₅H₂₁NO₃ (263.3) Calcd. C 68.44 H 7.98 Found C 68.53 H 8.20

1-(4-Methoxyphenyl)-2-nitro-1-(4-pentenyloxy)ethane (8d) was prepared from 4-methoxy-β-nitrostyrene (2e) and 4-penten-1-ol in 87% yield. — ¹H NMR: δ = 1.61 (quint, J = 6.5 Hz, 2H, OCH₂CH₂CH₂), 2.10 (m, 2H, OCH₂CH₂CH₂), 3.30 and 3.38 (dt, J = 9/6.5 Hz, 1H, CH₂O), 3.82 (s, 3H, CH₃O), 4.36 (dd, J = 13/4 Hz, 1H, CH₂NO₂), 4.60 (dd, J = 13/10 Hz, 1H, CH₂NO₂), 4.93 (dq, J = 10/1 Hz, 1H, vinyl), 4.98 (dq, J = 17/1 Hz, 1H, vinyl), 5.74 (ddt, J = 17/10/7 Hz, 1H, vinyl). 6.92 and 7.28 (dt, J = 9/2 Hz, 2H, Ar). — ¹³C NMR: δ = 28.66 (CH₂CH₂O), 30.07 (CH₂CH₂CH₂O), 55.31 (CH₃O), 68.43 (CH₂O), 77.98 (CH — O), 80.52 (CH₂NO₂), 114.36, 114.89, 128.00, 128.49, 137.99, 160.08. — MS (m/z, relative intensity, EI): 265 [M⁺] (5), 205 [M⁺ — CH₂NO₂] (100), 180 [M⁺⁺ — C₅H₉O] (42), 134 [180 — NO₂] (30).

C₁₄H₁₉NO₄ (265.3) Calcd. C 63.40 H 7.17 Found C 63.36 H 7.43

1-(4-Methoxyphenyl)-2-nitro-1-propargyloxyethane (10) was prepared from 4-methoxy-β-nitrostyrene (2e) and propargyl alcohol in 85% yield after crystallization from chloroform/petroleum ether, m.p. $53-54^{\circ}\text{C}$. $-^{1}\text{H}$ NMR: $\delta=2.45$ (t, J=3 Hz, 1H, $C\equiv\text{CH}$), 3.82 (s, 3H, CH_{3}O), 3.90 and 4.15 (dd, J=16/3 Hz, 1H, CH_{2}O), 4.41 (dd, J=13/4 Hz, 1H, $\text{CH}_{2}\text{NO}_{2}$), 4.69 (dd, J=13/10 Hz, 1H, $\text{CH}_{2}\text{NO}_{2}$), 5.29 (dd, J=10/4 Hz, 1H, CH-O), 6.92 and 7.30 (dt, J=9/2 Hz, 1H, Ar). $-^{13}\text{C}$ NMR: $\delta=55.33$ (CH₃O), 55.72 (CH₂O), 75.19 (C \equiv C-H), 76.32 (CH-O), 78.39 (C \equiv CH), 79.98 (CH₂NO₂), 114.50, 126.85, 128.47, 160.40. — MS (m/z, relative intensity, EI): 235 [M⁺] (39), 175 [M⁺ - CH₂NO₂] (100), 135 [175 - C₃H₄] (67), 134 [Ar = CHCH₂⁺] (38).

C₁₂H₁₃NO₄ (235.2) Calcd. C 61.28 H 5.53 Found C 60.99 H 5.63

General Procedure for the Cycloaddition

3a,4-Dihydro-6-methyl-3H,6H-furo[3,4-c]isoxazole (6a): To a solution of 0.725 g (5.0 mmol) of 4a in 30 ml of dry benzene, containing a few drops of trimethylamine, was added 1.775 g (15 mmol) of phenyl isocyanate. The solution was allowed to stand at room temp. for 2 d, diphenylurea was filtered, benzene removed in vacuo and the residue chromatographed over silica with chloroform as the eluent to yield 0.572 g (90%) of a 2.5:1 trans:cis mixture of 6a as a colorless oil. The spectral data were in agreement with those reported ³⁾.

6-Ethyl-3a,4-dihydro-3H,6H-furo[3,4-c]isoxazole (6b) was prepared from 4b as a 2.5:1 trans: cis mixture in 83% yield (colorless

oil). – trans-6b: ¹H NMR: δ = 1.01 (t, J = 7.5 Hz, 3H, CH₃), 1.62 – 1.90 (m, 2H, CH₂), 3.64 (dd, J = 9/8 Hz, 1H, 4-H), 3.98 (dd, J = 12/8 Hz, 1 H, 3-H), 4.10 – 4.30 (m, 1 H, 3a-H), 4.27 (t, J = 8 Hz, 1 H, 4-H), 4.47 (br t, J = 7 Hz, 1 H, 6-H), 4.54 (t, J = 9 Hz, 1 H, 3-H). – ¹³C NMR: δ = 9.00 (CH₃), 26.63 (CH₂), 55.42 (C-3a), 69.62 (C-4), 72.96 (C-6), 73.18 (C-3), 121.49 (C=N). – cis-6b: ¹H NMR: δ = 1.08 (t, J = 7.5 Hz, 3 H, CH₃), 1.62 – 1.90 (m, 2 H, CH₂), 3.68 (m, 1 H, 4-H), 3.98 (m, 1 H, 3-H), 4.10 – 4.30 (m, 2 H, CH₂O) 3a, 4-H), 4.47 (br t, J = 7 Hz, 1 H, 6-H), 4.55 (m, 1 H, 3-H). – ¹³C NMR: δ = 9.42 (CH₃), 26.10 (CH₂), 56.10 (C-3a), 68.39 (C-4), 72.82 (C-6), 73.41 (C-3), 170.96 (C=N). – MS (m/z, relative intensity, EI, mixture of isomers): 142 [MH⁺] (100), 141 [M⁺] (38), 111 [M⁺ – CH₂O] (60).

C₇H₁₁NO₂ (mixture of isomers) (141.2) Calcd. C 59.57 H 7.80 Found C 59.80 H 8.04

3a,4-Dihydro-6-isopropyl-3H,6H-furo[3,4-c]isoxazole (6c) was prepared from 4c as a 6:1 trans: cis mixture in 85% yield (colorless oil). – trans-6c in mixture: ¹H NMR: $\delta = 0.99$ and 1.04 [d, J =7 Hz, 3H, $(CH_3)_2$ CH], 2.04 [oct, J = 7 Hz, 1H, $(CH_3)_2$ CH], 3.64 (dd, J = 9.8 Hz, 1 H, 4-H), 3.98 (dd, J = 13/7.5 Hz, 1 H,3-H), 4.0 – 4.35 (m, 3H, 3a-, 4-, 6-H), 4.55 (dd, J = 8.5, 7.5 Hz, 1H, 3-H). \rightarrow ¹³C NMR: $\delta = 17.60$ and 17.97 [(CH₃)₂CH], 31.52 [(CH₃)₂CH], 56.11 (C-3a), 69.64 (C-4), 72.96 (C-3), 27.43 (C-6), 171.23 (C=N). - cis-**6c** in the mixture: ¹H NMR: $\delta = 1.06$ and 1.10 [d, J = 7 Hz, 3H, $(CH_3)_2$ CH], 1.94 [octet, J = 7 Hz, 1H, $(CH_3)_2$ CH], 3.66 (m, 1H, 4-H), 3.96 (m, 1 H, 3-H), 4.0-4.35 (m, 3 H, 3a-, 4-, 6-H), 4.56 (m, 1H, 3-H). - ¹³C NMR: $\delta = 17.83$ and 18.15 [(CH₃)₂CH], 31.72 [(CH₃)₂CH], 56.38 (C-3a), 68.88 (C-4), 73.04 (C-3), 76.62 (C-6), 169.90 (C=N). - MS (m/z, relative intensity, mixture of isomers, EI): 156 $[MH^{+}]$ (100), 155 $[M^{+}]$ (29), 125 $[M^{+} - CH_{2}O]$ (33), 112 $[M^{+} C_3H_8$] (34).

> C₈H₁₃NO₂ (mixture of isomers) (155.2) Calcd. C 61.93 H 8.39 Found C 61.63 H 8.46

3a,4-Dihydro-6-phenyl-3 H,6 H-furo [3,4-c]isoxazole (6d) was prepared from 4d as a 4:1 trans: cis mixture 8 in 87% yield (oil). By chromatography with dichloromethane over silica gel the two isomers were separated. trans-6d was identical with the earlier described compound 3. — cis-6d: crystals from methanol, m.p. 93°C. — 1H NMR: δ = 3.91 (m, 1 H, 4-H), 4.06 (m, 1 H, 3-H), 4.40 (m, 2 H, 3a, 4-H), 4.62 (m, 1 H, 3-H), 5.61 (s, 1 H, 6-H). Irradiation with this frequency increases the intensity of the signal at δ = 4.40 by 2.5% (NOE), 7.30 – 7.43 (m, 5 H, Ph). — 13 C NMR: δ = 56.08 (C-3a), 69.31 (C-4), 73.11 (C-6), 73.98 (C-3), 126.40, 128.45, 128.74, 137.31 (Ph), 170.64 (C=N). — MS (m/z, relative intensity, EI): 189 [M+] (46), 159 [M+ — CH₂O] (19), 130 [159 — CHO] (30).

C₁₁H₁₁NO₂ (189.2) Calcd. C 69.84 H 5.82 Found C 69.72 H 5.94

3 a,4-Dihydro-6-(4-methoxyphenyl)-3 H,6 H-furo[3,4-c]isoxazole (6e) was prepared from 4e as a 4:1 trans:cis mixture in 87% yield. The two isomers were separated by chromatography over SiO₂ with dichloromethane. — trans-6e: crystals from methanol, m.p. $112-113\,^{\circ}$ C. — 1 H NMR: $\delta=3.77$ (dd, J=9/8 Hz, 1H, 4-H), 3.79 (s, 3H, CH₃O), 4.03 (dd, J=12/8 Hz, 1H, 3-H), 4.18—4.32 (m, 1H, 3a-H), 4.38 (t, J=8 Hz, 1H, 4-H), 4.56 (dd, J=9/8 Hz, 1H, 3-H), 5.53 (br s, 1H, 6-H), 6.90 and 7.31 (dt, J=9/2 Hz, 2H, Ar). — 13 C NMR: $\delta=54.68$ (C-3a), 55.17 (CH₃O), 69.69 (C-4), 72.64 (C-6), 73.48 (C-3), 114.00, 127.07, 129.34, 159.63 (Ar), 170.51 (C=N). — MS (m/z, relative intensity, EI): 219 [M+] (52), 189 [M+ — CH₂O] (84), 135 [ArC=O+] (100).

C₁₂H₁₃NO₃ (219.2) Calcd. C 65.75 H 5.94 Found C 65.74 H 6.17 Cycloadditions, 47

cis-6e: ¹H NMR: δ = 3.79 (s, 3 H, CH₃O), 3.86 (m, 1 H, 4-H), 4.08 (m, 1 H, 3-H), 4.28 – 4.40 (m, 2 H, 3a,4-H), 4.61 (m, 1 H, 3-H), 5.52 (br s, 1 H, 6-H), 6.90 and 7.35 (dt, J = 9,2 Hz, 2 H, Ar). – ¹³C NMR: δ = 55.17 (CH₃O), 55.77 (C-3a), 68.91 (C-4), 72.78 (C-6), 74.03 (C-3), 113.89, 127.94, 129.15, 159.63 (Ar), 170.51 (C = N). – MS (m/z, relative intensity, EI): 219 [M⁺] (58), 189 [M⁺ – CH₂O] (27), 160 [189 – CHO] (28), 135 [ArC \equiv O⁺] (100).

3 a,4-Dihydro-6-(4-methoxyphenyl)-3-methyl-3 H,6 H-furo[3,4-c]isoxazole (6f) was prepared from 4f as a 3:1 trans:cis mixture in 79% yield. The two isomers were separated by chromatography over SiO₂ with dichloromethane. – trans-6f: crystals from methanol, m.p. 94°C. – ¹H NMR: δ = 1.51 (d, J = 7 Hz, 3 H, CH₃), 3.80 (s, 3 H, CH₃O), 3.78 – 4.00 (m, 2 H, 3a-, 4-H), 4.22 – 4.42 (m, 1 H, 4-H), 4.60 – 4.70 (m, 1 H, 3-H), 5.50 (br s, 1 H, 6-H), 6.88 and 7.32 (dt, J = 9/2 Hz, 2H, Ar). – ¹³C NMR: δ = 18.22 (CH₃), 55.32 (CH₃O), 59.69 (C-3a), 69.13 (C-4), 73.09 (C-6), 83.97 (C-3), 114.13, 127.15, 129.60, 159.76 (Ar), 171.80 (C=N). – MS (m/z, relative intensity, EI): 233 [M+] (19), 189 [M+ — CH₃CHO] (100), 135 [ArC≡O+] (73).

C₁₃H₁₅NO₃ (233.3) Calcd. C 66.95 H 6.43 Found C 66.75 H 6.70

cis-6f: oil. $- {}^{1}H$ NMR: $\delta = 1.54$ (d, J = 7 Hz, 3H, CH₃), 3.80 (s, 3H, CH₃O), 3.78 – 4.00 (m, 2H, 3a-, 4-H), 4.12 – 4.32 (m, 1H, 4-H), 4.59 – 4.69 (m, 1H, 3-H), 5.48 (br s, 1H, 6-H), 6.88 and 7.36 (dt, J = 9.2 Hz, Ar). $- {}^{13}C$ NMR: $\delta = 18.22$ (CH₃), 55.32 (CH₃O), 60.93 (C-3a), 68.32 (C-4), 73.24 (C-6), 84.41 (C-3), 114.04, 128.16, 129.23, 159.76 (Ar), 171.80 (C=N). - MS (m/z, relative intensity EI): 233 [M⁺] (19), 188 [M⁺ - C₂H₅O] (7), 135 [ArC \equiv O⁺] (100).

3 a,4-Dihydro-6-(4-methoxyphenyl)-3-phenyl-3 H,6 H-furo[3,4c/isoxazole (6g) was prepared from 4g as a 3:1 trans: cis mixture in 78% yield (oil). – trans-6g: ¹H NMR: $\delta = 3.80$ (s, 3H, CH₃O), $3.97 \, (dd, J = 9/8 \, Hz, 1 \, H, 4-H), 4.19 - 4.30 \, (dddd; J = 12/9/8/1 \, Hz,$ 3a-H), 4.41 (t, J=8 Hz, 1H, 4-H), 5.52 (d, J=12 Hz, 1H, 3-H), 5.59 (s, 1 H, 6-H), 6.91 and 7.32 (dt, J = 9/2 Hz, 2 H, Ar), 7.32 – 7.42 (m. 5 H, Ph). $- {}^{13}$ C NMR: $\delta = 55.33$ (CH₃O), 60.65 (C-3a), 69.35 (C-4), 73.19 (C-6), 89.09 (C-3), 114.20, 126.66, 127.07, 128.80, 129.40, 136.88, 159.84 (Ar + Ph), 171.21 (C=N). - cis-6g: ¹H NMR: δ = 3.81 (s, 3H, CH₃O), 4.05 (m, 1H, 4-H), 4.30-4.45 (m, 2H, 3a-, 4-H), 5.50 (d, J = 12 Hz, 1H, 3-H), 5.56 (br s, 1H, 6-H), 6.93 (dt, J = 9, 2 Hz, 2H, Ar), 7.30-7.42 (m, 7H, Ar+Ph). - 13 C NMR: $\delta = 55.33$ (CH₃O), 61.85 (C-3a), 68.52 (C-4), 73.28 (C-6), 89.57 (C-3), 114.10, 126.77, 127.07, 128.80, 129.05, 136.73, 159.84 (Ph + Ar), 171.53 (C=N). - MS (m/z, relative intensity, mixture of isomers, EI): 296 [MH⁺] (32), 189 [M⁺ - Ar] (100), 135 [ArC \equiv O⁺] (61).

C₁₈H₁₇NO₃ Calcd. 295.129 Found 295.128 (MS)

3 a,4-Dihydro-6-(4-methoxyphenyl)-3 a-methyl-3 H,6 H-furo[3,4-c]isoxazole (6h) was prepared from 4h as a 2:1 trans:cis mixture in 84% yield (oil). — trans-6h: 1 H NMR: δ = 1.37 (s, 3 H, CH₃), 3.81 (s, 3 H, CH₃O), 3.94 and 4.04 (d, J = 8 Hz, 1 H, 4-H), 4.19 and 4.22 (d, J = 8/1 H, 3-H), 5.56 (br s, 1 H, 6-H), 6.91 and 7.37 (dt, J = 9/2 Hz, 2 H, Ar). — 13 C NMR: δ = 20.32 (CH₃), 55.26 (CH₃O), 61.43 (C-3a), 72.99 (C-6), 75.91 (C-4), 80.19 (C-3), 114.02, 126.91, 129.44, 159.44 (Ar), 174.20 (C=N). — cis-6h: 13 C NMR: δ = 20.43 (CH₃), 55.26 (CH₃O), 61.93 (C-3a), 72.21 (C-6), 75.24 (C-4), 80.19 (C-3), 114.02, 127.97, 128.98, 159.47 (Ar), 174.06 (C=N). — MS (m/z, relative intensity, mixture of isomers, EI): 234 [MH+] (37), 233 [M+] (31), 232 [M+ — H] (69), 203 [M+ — CH₂O] (45), 135 [ArC=O+] (100).

C₁₃H₁₅NO₃ Calcd. 233.119 Found 233.119 (MS)

cis-3,3 a,4,5-Tetrahydro-7-methyl-7H-pyrano[3,4-c]isoxazole (9a) was prepared in 72% yield from 8a as a colorless oil. The spectral data were identical with those of the earlier reported compound³⁾.

3,3 a,4,5-Tetrahydro-7-(4-methoxyphenyl)-7 H-pyrano[3,4-c]isoxazole (9b) was prepared in 95% yield from 8b as a 6:1 cis: trans mixture (oil). - cis-9 b: ¹H NMR: $\delta = 1.92$ (qd, J = 13/5 Hz, 1 H, H_{ax}), 2.22 (ddt, J = 13/7.5, 1 Hz, 1 H, H_{eq}), 3.30 – 3.64 (m, 1 H, 3a-H), 3.73 (td, J = 13/2 Hz, 1 H) 3.80 (s, 3 H, CH₃O), 3.86 (dd, J =12/8 Hz, 1H, 3-H), 4.21 (ddd, J = 13/5/2 Hz, 1H, 5-H_{eq}), 4.67 (dd, J = 10/8 Hz, 1 H, 3-H), 5.07 (br s, 1 H, 7-H), 6.90 and 7.38 (dt, J =9/2 Hz, 2H, Ar). - ¹³C NMR: $\delta = 32.92$ (C-4), 46.58 (C-3a), 55.24 (CH₃O), 66.53 (C-5), 73.96 (C-3), 77.10 (C-7), 113.78, 128.59, 129.00, 158.68 (Ar), 159.81 (C=N). – trans-9b: ¹H NMR: $\delta = 1.86$ (qd, J = 13/5 Hz, 1 H, H_{ax}), 2.08 (ddt, J = 13/7/2 Hz, 1 H, H_{eq}), 3.38 (br qd, J = 12/6 Hz, 1H, 3a-H), 3.58 (td, J = 11/2 Hz, 1H, 5-H_{ax}), 3.80 (ddd, J = 11/5/2 Hz, 1H, 5-H_{eq}), 3.82 (s+dd, J = 12/8 Hz, 4H, CH₃O + 3-H), 4.64 (dd, J = 10/8 Hz, 1H, 3-H), 5.81 (br s, 1 H, 7-H), 6.92 and 7.28 (dt, J = 9/2 Hz, 2 H, Ar). $- {}^{13}$ C NMR: $\delta = 33.15$ (C-4), 43.81 (C-3a), 55.24 (CH₃O), 59.58 (C-5), 72.19 (C-7), 73.69 (C-3), 114.24, 127.58, 127.96, 159.81 (Ar), 156.78 (C=N). -MS (m/z, relative intensity, mixture of isomers, EI): 233 [M⁺] (100),203 $[M^+ - CH_2O]$ (52), 202 $[M^+ - CH_2OH]$ (53), 172 [202 - CH_2O] (35), 135 [ArC $\equiv O^+$] (86).

> C₁₃H₁₅NO₃ (mixture of isomers) (233.3) Calcd. C 66.95 H 6.43 Found C 66.69 H 6.69

3,3 a,4,5-Tetrahydro-7-(2,4,6-trimethylphenyl)-7 H-pyrano[3,4c/isoxazole (9c) was obtained from 8c in 80% yield as an oil, containing >95% of cis-9c and a trace of the trans-isomer. Crystallization from chloroform/hexane (60%) gave pure cis-13c, m.p. 135-136 °C. - ¹H NMR: $\delta = 1.91$ (qd, J = 12/5 Hz, 1H, H_{ax}), 2.20 (ddt, J = 12/6/2 Hz, 1H, H_{eq}), 2.24 (s, 3H, 4-CH₃), 2.34 (br s, 6H, 2,6-CH₃), 3.50 (m, 1H, 3a-H), 3.66 (td, J = 12/2 Hz, 1H, 5- H_{ax}), 3.82 (dd, J = 13/8 Hz, 1H, 3-H), 4.21 (dddd, J = 12/5/2 Hz, 1 H, 5-H_{eq}), 4.69 (dd, J = 10/8 Hz, 1 H, 3-H), 5.48 (br s, 1 H, 7-H). Irradiation at this frequency increases the intensity of the signal at $\delta = 3.66$ by 6% and the signal at $\delta = 3.50$ by 2.5% (NOE), 6.84 (br s, 2H, Ar). - ¹³C NMR: $\delta = 20.85$ (br, CH₃), 31.80 (C-4), 46.76 (C-3a), 66.41 (C-5), 73.67 (C-3, -7), 128.13, 129.99, 137.82 (Ar), 156.60 (C=N). - MS (m/z), relative intensity, EI): 245 [M⁺] (42), 214 $[M^{+} - CH_{2}O]$ (12), 200 $[M^{+} - CH_{2}O - CH_{3}]$ (94), 184 $[M^{+} CH_2CH_3O$] (73), 147 [ArC $\equiv O^+$] (100).

> C₁₅H₁₉NO₂ (245.3) Calcd. C 73.47 H 7.76 Found C 73.19 H 7.62

3 a,4,5,6-Tetrahydro-8-(4-methoxyphenyl)-3 H,8 H-oxepino[3,4c lisoxazole (9d): To a solution of 265 mg (1.0 mmol) of 8d in 100 ml of benzene, containing a few drops of triethylamine, was added 0.36 g (3.0 mmol) of phenyl isocyanate, and the mixture was refluxed for ca. 12 h. The usual workup yielded 75 mg (30%) of 9d after crystallization from methanol, m.p. 68-69°C. - ¹H NMR: $\delta = 1.55 - 1.93$ (m, 4H, 4-,5-H), 3.28 (dtd, J = 12/6/4 Hz, 1H, 3a-H), 3.48 (ddd, J = 13/10/3 Hz, 1H, 6-H_{ax}), 3.79 (s, 3H, CH₃O), 4.12 $(d, J = 6 Hz, 2H, 3-H), 4.23 (dm, J = 13 Hz, 1H, 6-H_{eq}), 5.55 (br s,$ 1 H, 8-H), 6.89 and 7.38 (dt, J = 9/2 Hz, 2H, Ar). Irradiation at $\delta = 4.12$ collapsed the dtd at $\delta = 3.28$ to a dd (J = 12/4 Hz). Irradiation at $\delta = 4.23$ collapsed the ddd at $\delta = 3.48$ to a dd (J =10/3 Hz). - ¹³C NMR: $\delta = 29.98$ and 32.41 (C-4, -5), 48.43 (C-3a), 55.27 (CH₃O), 70.51 (C-6), 75.41 (C-3), 77.35 (C-8), 113.92, 127.36, 131.81, 159.40 (Ar), 165.50 (C=N). — MS (m/z, relative intensity, CI, CH₄): 248 [MH⁺⁺] (100), 140 [M⁺ - Ar] (26).

> C₁₄H₁₇NO₃ (247.3) Calcd. C 68.02 H 6.88 Found C 67.75 H 6.69

6-(Methoxyphenyl)-4H,6H-furo[3,4-c]isoxazole (11) was prepared from 10 in 85% yield after crystallization from methanol, m.p. 58°C. — ¹H NMR: $\delta = 3.80$ (s, 3H, CH₃O), 4.94 (ddd, J = 12/1/0.5 Hz, 1H, 4-H), 5.03 (dt, J = 12/1 Hz, 1H, 4-H), 6.06 (br s,

1186 A. Hassner, W. Dehaen

1 H, 6-H), 6.91 and 7.35 (dt, J = 9/2 Hz, 2 H, Ar), 8.07 (t, J = 1 Hz, 1 H, 3-H). - ¹³C NMR: $\delta = 55.26$ (CH₃O), 63.67 (C-4), 76.19 (C-6), 114.07 (Ar), 123.06 (C-3), 127.86, 129.89 (Ar), 148.04 (C-3a), 159.78 (Ar), 172.43 (C=N). — MS (m/z, relative intensity, EI): 217 $[M^+]$ (25), 135 $[ArC \equiv O^+]$ (100).

> $C_{12}H_{11}NO_3$ (217.2) Calcd. C 66.36 H 5.07 Found C 66.08 H 4.86

CAS Registry Numbers

2 (R = mesityl): 128869-45-4 / 2a: 3156-70-5 / 2d: 102-96-5 / 2e:3199-10-0 / 3f: 6117-91-5 / 3g: 104-54-1 / 3h: 513-42-8 / 4a: 127865-31-0 / 4b: 132439-78-2 / 4c: 132439-79-3 / 4d: 132439-80-6 / 4e: 132439-81-7 / **4f**: 132439-82-8 / **4g**: 132439-83-9 / **4h**: 132439-84-0 / **6a** (cis isomer): 120783-51-9 / **6a** (trans isomer): 120783-52-0 / **6b** (cis isomer): 132439-85-1 / **6b** (trans isomer): 132439-91-9 / 6f: 132439-92-0 / 6g: 132439-93-1 / 6h (*cis* isomer): 132439-94-2 / 6h (*trans* isomer): 132439-95-3 / 7 (R = Me): 3156-76-1 94-2 / **bn** (trans isomer): 132439-95-3 / / (R = Me): 3156-76-1 / **7b**: 3156-75-0 / **7c**: 41367-90-2 / **8a**: 127865-35-4 / **8b**: 132439-96-4 / **8c**: 132439-97-5 / **8d**: 132439-98-6 / **9a** (cis isomer): 127865-36-5 / **9b** (cis isomer): 132439-99-7 / **9b** (trans isomer): 132440-00-7 / **9c** (cis isomer): 132440-01-8 / **9c** (trans isomer): 132440-

02-9 / 9d (cis isomer): 132440-03-0 / 10: 132440-04-1 / 11: 132440-05-2 / allyl alcohol: 107-18-6 / 3-buten-1-ol: 627-27-0 / 4-penten-1-ol: 821-09-0 / propargyl alcohol: 107-19-7

1) Part 46: A. Hassner, R. Maurya, A. Padwa, W. H. Bullock, J.

Org. Chem., in press.

For instance, J. Yoshimura, Adv. Carbohydr. Chem. 42 (1984) 69; M. Bourgeois, Helv. Chim. Acta. 56 (1973) 2879; 58 (1975) 363.

3) A. Hassner, K. S. K. Murthy, A. Padwa, U. Chiacchio, D. C. Dean, A. M. Schoffstall, J. Org. Chem. 54 (1989) 5277.

⁴⁾ A. P. Kozikowski, Acc. Chem. Res. 17 (1984) 410, and references

⁵⁾ A. Hassner, K. S. K. Murthy, Tetrahedron Lett. 28 (1987) 683.

6) T. L. Gilchrist, Chem. Soc. Rev. 12 (1983) 53.

7) T. Mukaiyama, T. Hoshino, J. Am. Chem. Soc. 82 (1960) 5339.

8) Previously (ref. 3) it has been thought that 6d had formed as the trans isomer exclusively. We now have shown that an 80:20 trans: cis mixture is formed.

⁹⁾ We are indebted to Prof. A. Padwa for the MM2 calculations. ¹⁰⁾ No NOE can be measured between the benzylic and bridgehead protons. An alternative trans configuration for 9d with an equatorial phenyl group and axial bridgehead hydrogen cannot, however, be excluded.

[338/90]